Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-21 19:40:52 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7fa038f587a0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-21 19:40:52 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-21 19:40:52 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-21 19:40:52 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
7 rsMam5z0HUVP0000 None True Eardrum intestine IgG2 classify IgG IgG4 Merke... None None notebook None None None None None 2024-11-21 19:41:06.672236+00:00 1
10 lG5YtSAcVhRK0000 None True Cluster intestine efficiency IgG Thyrotropes P... None None notebook None None None None None 2024-11-21 19:41:06.672521+00:00 1
23 FqfNq8u4Qy7S0000 None True Ige IgD intestine investigate IgG4. None None notebook None None None None None 2024-11-21 19:41:06.673771+00:00 1
25 nhcJVuD0kAqv0000 None True Intestine research IgY. None None notebook None None None None None 2024-11-21 19:41:06.673960+00:00 1
31 qAmtmTMFktuX0000 None True Igg2 intestine Thyrotropes research Thyrotrope... None None notebook None None None None None 2024-11-21 19:41:06.674527+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
24 hSkzecJbjM4I0000 None True Igg2 research IgM Von Ebner's gland IgY IgG3 T... None None notebook None None None None None 2024-11-21 19:41:06.673866+00:00 1
25 nhcJVuD0kAqv0000 None True Intestine research IgY. None None notebook None None None None None 2024-11-21 19:41:06.673960+00:00 1
26 FktSdAzlK3zu0000 None True Igm IgG2 IgD research. None None notebook None None None None None 2024-11-21 19:41:06.674055+00:00 1
27 jtYpHD8AAsiP0000 None True Igm research IgG1 IgG2 candidate IgG3. None None notebook None None None None None 2024-11-21 19:41:06.674150+00:00 1
31 qAmtmTMFktuX0000 None True Igg2 intestine Thyrotropes research Thyrotrope... None None notebook None None None None None 2024-11-21 19:41:06.674527+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
24 hSkzecJbjM4I0000 None True Igg2 research IgM Von Ebner's gland IgY IgG3 T... None None notebook None None None None None 2024-11-21 19:41:06.673866+00:00 1
25 nhcJVuD0kAqv0000 None True Intestine research IgY. None None notebook None None None None None 2024-11-21 19:41:06.673960+00:00 1
26 FktSdAzlK3zu0000 None True Igm IgG2 IgD research. None None notebook None None None None None 2024-11-21 19:41:06.674055+00:00 1
27 jtYpHD8AAsiP0000 None True Igm research IgG1 IgG2 candidate IgG3. None None notebook None None None None None 2024-11-21 19:41:06.674150+00:00 1
31 qAmtmTMFktuX0000 None True Igg2 intestine Thyrotropes research Thyrotrope... None None notebook None None None None None 2024-11-21 19:41:06.674527+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
94 JHzkHAhStHt00000 None True Research IgG IgM. None None notebook None None None None None 2024-11-21 19:41:06.684633+00:00 1
136 KqgPa7hFlcwv0000 None True Research Thyrotropes intestinal IgY. None None notebook None None None None None 2024-11-21 19:41:06.692074+00:00 1
210 skTvzpDD7Vrb0000 None True Research IgG1 result. None None notebook None None None None None 2024-11-21 19:41:06.702536+00:00 1
277 SABgXGivlyGn0000 None True Research Von Ebner's gland candidate. None None notebook None None None None None 2024-11-21 19:41:06.712282+00:00 1
292 hgZqC07tMMRk0000 None True Research IgG3 IgD rank IgG2 intestinal IgG4. None None notebook None None None None None 2024-11-21 19:41:06.713699+00:00 1
303 hrO5AMJf32X50000 None True Research IgD rank IgG IgG3. None None notebook None None None None None 2024-11-21 19:41:06.714718+00:00 1
327 SpzSirYnrzyx0000 None True Research research Tendons IgY research study IgD. None None notebook None None None None None 2024-11-21 19:41:06.716944+00:00 1
368 QVZHa2NhB2kD0000 None True Research Ganglia candidate IgG intestine Sperm... None None notebook None None None None None 2024-11-21 19:41:06.724354+00:00 1
369 KdJpa9J6zWjo0000 None True Research candidate IgG Chandelier cells IgY IgY. None None notebook None None None None None 2024-11-21 19:41:06.724446+00:00 1
409 XqA4m8DYVtUZ0000 None True Research IgG Duodenum IgE Oogonium IgG4. None None notebook None None None None None 2024-11-21 19:41:06.731807+00:00 1
480 sy8Jo4zK6I3I0000 None True Research IgG4 IgG4 candidate efficiency IgG4. None None notebook None None None None None 2024-11-21 19:41:06.742156+00:00 1
491 HpkeinlsY6Yf0000 None True Research candidate IgG4. None None notebook None None None None None 2024-11-21 19:41:06.743181+00:00 1
497 Uz41yXyevNmL0000 None True Research IgE result Oogonium efficiency. None None notebook None None None None None 2024-11-21 19:41:06.743740+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 ckvo25K0yCh8ZnoH0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-21 19:40:56.676316+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 JMZfKwmOaiTOBQkM0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-21 19:40:56.769089+00:00 1
3 oetocz9ZZris9J250000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-21 19:40:56.782612+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries