lamindb.FeatureSet¶
- class lamindb.FeatureSet(features: Iterable[Record], dtype: str | None = None, name: str | None = None)¶
-
Feature sets.
Stores references to sets of
Feature
and other registries that may be used to identify features (e.g.,Gene
orProtein
).Why does LaminDB model feature sets, not just features?
Performance: Imagine you measure the same panel of 20k transcripts in 1M samples. By modeling the panel as a feature set, you can link all your artifacts against one feature set and only need to store 1M instead of 1M x 20k = 20B links.
Interpretation: Model protein panels, gene panels, etc.
Data integration: Feature sets provide the currency that determines whether two collections can be easily concatenated.
These reasons do not hold for label sets. Hence, LaminDB does not model label sets.
- Parameters:
features –
Iterable[Record]
An iterable ofFeature
records to hash, e.g.,[Feature(...), Feature(...)]
. Is turned into a set upon instantiation. If you’d like to pass values, usefrom_values()
orfrom_df()
.dtype –
str | None = None
The simple type. Defaults toNone
for sets ofFeature
records. nd otherwise defaults to"number"
(e.g., for sets ofGene
).name –
str | None = None
A name.
Note
A feature set can be identified by the
hash
its feature uids. It’s stored in the.hash
field.A
slot
provides a string key to access feature sets. It’s typically the accessor within the registered data object, herepd.DataFrame.columns
.See also
from_values()
Create from values.
from_df()
Create from dataframe columns.
Examples
Create a featureset from df with types:
>>> df = pd.DataFrame({"feat1": [1, 2], "feat2": [3.1, 4.2], "feat3": ["cond1", "cond2"]}) >>> feature_set = ln.FeatureSet.from_df(df)
Create a featureset from features:
>>> features = ln.Feature.from_values(["feat1", "feat2"], type=float) >>> feature_set = ln.FeatureSet(features)
Create a featureset from feature values:
>>> import bionty as bt >>> feature_set = ln.FeatureSet.from_values(adata.var["ensemble_id"], Gene.ensembl_gene_id, orgaism="mouse") >>> feature_set.save()
Link a feature set to an artifact:
>>> artifact.features.add_feature_set(feature_set, slot="var")
Link features to an artifact (will create a featureset under the hood):
>>> artifact.features.add_values(features)
Attributes¶
Simple fields¶
-
uid:
str
¶ A universal id (hash of the set of feature values).
-
name:
str
|None
¶ A name (optional).
- n¶
Number of features in the set.
-
dtype:
str
|None
¶ Data type, e.g., “number”, “float”, “int”. Is
None
forFeature
.For
Feature
, types are expected to be heterogeneous and defined on a per-feature level.
-
registry:
str
¶ The registry that stores the feature identifiers, e.g.,
'core.Feature'
or'bionty.Gene'
.Depending on the registry,
.members
stores, e.g.Feature
orGene
records.
-
hash:
str
|None
¶ The hash of the set.
-
created_at:
datetime
¶ Time of creation of record.
Relational fields¶
Class methods¶
- classmethod df(include=None, join='inner', limit=100)¶
Convert to
pd.DataFrame
.By default, shows all direct fields, except
updated_at
.Use parameter
include
to include other fields.- Parameters:
include (
str
|list
[str
] |None
, default:None
) – Related fields to include as columns. Takes strings of form"labels__name"
,"cell_types__name"
, etc. or a list of such strings.join (
str
, default:'inner'
) – Thejoin
parameter ofpandas
.limit (
int
, default:100
) – Maximum number of rows to display from a Pandas DataFrame. Defaults to 100 to reduce database load.
- Return type:
DataFrame
Examples
>>> labels = [ln.ULabel(name="Label {i}") for i in range(3)] >>> ln.save(labels) >>> ln.ULabel.filter().df(include=["created_by__name"])
- classmethod filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Q
objects.expressions – Fields and values passed as Django query expressions.
- Return type:
QuerySet
- Returns:
A
QuerySet
.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my ulabel").save() >>> ulabel = ln.ULabel.get(name="my ulabel")
- classmethod from_df(df, field=FieldAttr(Feature.name), name=None, mute=False, organism=None, source=None)¶
Create feature set for validated features.
- Return type:
FeatureSet
|None
- classmethod from_values(values, field=FieldAttr(Feature.name), type=None, name=None, mute=False, organism=None, source=None, raise_validation_error=True)¶
Create feature set for validated features.
- Parameters:
values (
List
[str
] |Series
|array
) – A list of values, like feature names or ids.field (
DeferredAttribute
, default:FieldAttr(Feature.name)
) – The field of a reference registry to map values.type (
str
|None
, default:None
) – The simple type. Defaults toNone
if reference registry isFeature
, defaults to"float"
otherwise.name (
str
|None
, default:None
) – A name.organism (
Record
|str
|None
, default:None
) – An organism to resolve gene mapping.source (
Record
|None
, default:None
) – A public ontology to resolve feature identifier mapping.raise_validation_error (
bool
, default:True
) – Whether to raise a validation error if some values are not valid.
- Raises:
ValidationError – If some values are not valid.
- Return type:
Examples
>>> features = ["feat1", "feat2"] >>> feature_set = ln.FeatureSet.from_values(features)
>>> genes = ["ENS980983409", "ENS980983410"] >>> feature_set = ln.FeatureSet.from_values(features, bt.Gene.ensembl_gene_id, float)
- classmethod get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int
|str
|None
, default:None
) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A record.
- Raises:
lamindb.core.exceptions.DoesNotExist – In case no matching record is found.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ulabel = ln.ULabel.get("2riu039") >>> ulabel = ln.ULabel.get(name="my-label")
- classmethod lookup(field=None, return_field=None)¶
Return an auto-complete object for a field.
- Parameters:
field (
str
|DeferredAttribute
|None
, default:None
) – The field to look up the values for. Defaults to first string field.return_field (
str
|DeferredAttribute
|None
, default:None
) – The field to return. IfNone
, returns the whole record.
- Return type:
NamedTuple
- Returns:
A
NamedTuple
of lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- classmethod search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str
) – The input string to match against the field ontology values.field (
str
|DeferredAttribute
|None
, default:None
) – The field or fields to search. Search all string fields by default.limit (
int
|None
, default:20
) – Maximum amount of top results to return.case_sensitive (
bool
, default:False
) – Whether the match is case sensitive.
- Return type:
QuerySet
- Returns:
A sorted
DataFrame
of search results with a score in columnscore
. Ifreturn_queryset
isTrue
.QuerySet
.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- classmethod using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str
|None
) – An instance identifier of form “account_handle/instance_name”.- Return type:
QuerySet
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
Methods¶
- async adelete(using=None, keep_parents=False)¶
- async arefresh_from_db(using=None, fields=None, from_queryset=None)¶
- async asave(*args, force_insert=False, force_update=False, using=None, update_fields=None)¶
- clean()¶
Hook for doing any extra model-wide validation after clean() has been called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.
- clean_fields(exclude=None)¶
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.
- date_error_message(lookup_type, field_name, unique_for)¶
- delete()¶
Delete.
- Return type:
None
- get_constraints()¶
- get_deferred_fields()¶
Return a set containing names of deferred fields for this instance.
- prepare_database_save(field)¶
- refresh_from_db(using=None, fields=None, from_queryset=None)¶
Reload field values from the database.
By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn’t loaded from any database. The using parameter will override the default.
Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.
When accessing deferred fields of an instance, the deferred loading of the field will call this method.
- save(*args, **kwargs)¶
Save.
- Return type:
- save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)¶
Handle the parts of saving which should be done only once per save, yet need to be done in raw saves, too. This includes some sanity checks and signal sending.
The ‘raw’ argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.
- serializable_value(field_name)¶
Return the value of the field name for this instance. If the field is a foreign key, return the id value instead of the object. If there’s no Field object with this name on the model, return the model attribute’s value.
Used to serialize a field’s value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.
- unique_error_message(model_class, unique_check)¶
- validate_constraints(exclude=None)¶
- validate_unique(exclude=None)¶
Check unique constraints on the model and raise ValidationError if any failed.